Operator Norm Convergence of Spectral Clustering on Level Sets
نویسندگان
چکیده
Following Hartigan [1975], a cluster is defined as a connected component of the t-level set of the underlying density, i.e., the set of points for which the density is greater than t. A clustering algorithm which combines a density estimate with spectral clustering techniques is proposed. Our algorithm is composed of two steps. First, a nonparametric density estimate is used to extract the data points for which the estimated density takes a value greater than t. Next, the extracted points are clustered based on the eigenvectors of a graph Laplacian matrix. Under mild assumptions, we prove the almost sure convergence in operator norm of the empirical graph Laplacian operator associated with the algorithm. Furthermore, we give the typical behavior of the representation of the dataset into the feature space, which establishes the strong consistency of our proposed algorithm.
منابع مشابه
Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
متن کاملStrong convergence theorem for solving split equality fixed point problem which does not involve the prior knowledge of operator norms
Our contribution in this paper is to propose an iterative algorithm which does not require prior knowledge of operator norm and prove a strong convergence theorem for approximating a solution of split equality fixed point problem for quasi-nonexpansive mappings in a real Hilbert space. So many have used algorithms involving the operator norm for solving split equality fixed point problem, ...
متن کاملImproved COA with Chaotic Initialization and Intelligent Migration for Data Clustering
A well-known clustering algorithm is K-means. This algorithm, besides advantages such as high speed and ease of employment, suffers from the problem of local optima. In order to overcome this problem, a lot of studies have been done in clustering. This paper presents a hybrid Extended Cuckoo Optimization Algorithm (ECOA) and K-means (K), which is called ECOA-K. The COA algorithm has advantages ...
متن کاملNew product formulæ and quantum Zeno dynamics with generalized observables
We demonstrate a pair of new product formulæ which combine a projection with a resolvent of a positive operator, or with an exponential function and spectral projections, respectively. The convergence is strong or even operator-norm under more restrictive assumptions. The second mentioned formula can be used to describe Zeno dynamics in the situation when the usual non-decay measurement is repl...
متن کاملInterval-valued intuitionistic fuzzy aggregation methodology for decision making with a prioritization of criteria
Interval-valued intuitionistic fuzzy sets (IVIFSs), a generalization of fuzzy sets, is characterized by an interval-valued membership function, an interval-valued non-membership function.The objective of this paper is to deal with criteria aggregation problems using IVIFSs where there exists a prioritization relationship over the criteria.Based on the ${L}$ukasiewicz triangular norm, we first p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 12 شماره
صفحات -
تاریخ انتشار 2011